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Abstract 
The compromises involved in the design of RF bridges using current-transformers often lead to a 
transformer secondary inductance that is inadequate for good low-frequency amplitude flatness at 
the detector port.  A solution to this problem is to make the transformer secondary loading network 
into a second-order high-pass filter and choose the components to give either maximal flatness or a 
small overboost.  This approach gives a broadband high-precision current sampling network.  To 
make a transmission bridge, it is necessary to design a corresponding maximally-flat voltage-
sampling network.  Using passive networks, this can be done using resistive voltage-sampling 
(RVS) with a compensating inductor in parallel with the lower voltage-sampling arm.  The problem 
of thermal drift in the low-frequency balance condition, due to the variation of transformer core 
permeability with temperature, is solved by using the same magnetic material for the transformer 
and the compensating inductor.  At high frequencies, the maximally flat impedance bridge 
degenerates into a conventional RVS bridge.  The neutralisation problems associated with this 
configuration are discussed.
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Introduction
A problem with the design of conventional RF broadband current-transformers lies in reconciling 
the choice of secondary inductance with the need to maintain good sensitivity at low-frequencies 
and good phase performance at high-frequencies.  This is a particular drawback when trying to 
design accurate passive directional power-meters or return-loss analysers, because the low-
frequency roll-off in detector sensitivity makes a nonsense of any attempt at indicator calibration.  
In order to obtain amplitude flatness within 1% using a conventional transformer, it is necessary for 
the secondary reactance to be 7 times greater than the secondary load resistance at the lowest 
operating frequency1.  For a lower limit of (say) 1.6 MHz and a load resistance of 50 Ω, this implies
an inductance of 35 μH.  In HF radio engineering terms, this is a large, and in some cases 
impractical, inductance.   The difficulty becomes apparent when it is observed that a large 
inductance can be obtained in one of three ways:  by using a large number of secondary turns;  by 
using a transformer core with a large magnetic path area;  or by using high-permeability core 
material.  None of these options is attractive.  Using many turns or a large-area core implies a large 
conductor length,  with attendant problems of propagation delay and winding resistance.  Using 
many turns also implies a low overall transresistance (volts out vs. current in) and hence low 
sensitivity.  Resorting to high-permeability materials (which are more properly intended for EMC 
filtering and other non-critical applications) results in high core losses, strong dispersion effects 
(i.e., frequency-dependent inductance variation), and a huge temperature-coefficient of inductance.  
It starts to look as though good low-frequency performance is a lost cause unless frequency 
measurement and digital signal processing is included in the design; but there is a passive solution; 
the maximally-flat current-transformer network, which can achieve a flat output without the need 
for a large secondary inductance.
     The theory of the maximally-flat current-transformer was introduced in another article2 and has 
been confirmed experimentally3.  The circuit is that of a conventional current-transformer network 
with an additional capacitor placed in series with the secondary winding.  The capacitor is chosen in
relation to the other circuit parameters so that the network becomes a maximally-flat second-order 
high-pass filter, the effect being to steepen the low-frequency skirt and give an almost-constant in-
band amplitude response.  The inductance requirement for an in-band amplitude flatness within 2% 
is reduced by a factor of about 4 by inclusion of this LF-boost capacitor.
     In order to use the maximally-flat current-transformer as part of a transmission bridge, it is 
necessary to devise a companion maximally-flat voltage-sampling network.  The point is to tailor 
the frequency response of the voltage network so that it tracks that of the current-sampling network 
in both magnitude and phase.  Unfortunately, it is not possible to do so by modifying the 
conventional capacitive potential divider, because the counterpart of the boost capacitor is then a 
negative resistance.  This means that a resistive potential-divider is mandatory if a solution is to be 
found using passive components.  Passive resistive voltage-sampling (RVS) bridges are unsuitable 
for monitoring high-power transmitters because the divider will typically absorb 1 or 2% of the 
input power; but it is important to consider the merits of a maximally-flat bridge in the context of an
appropriate application.  The point is to make an instrument capable of producing accurate return-
loss or SWR measurements; in which case the power-level at which the reading is made is a matter 
of choice, and is preferably low.  One virtue of the maximally-flat current-sampling network is that 
it requires a low number of turns on the transformer and therefore allows a high transresistance.  
Hence it is ideal for sensitive bridges, i.e., bridges that give an off-balance output of several volts 
when the transmitted power is in the 10 W to 100 W range.

1 Current transformers for RF bridges and ammeters.  D W Knight.  www.g3ynh.info/zdocs/bridges/
2 The maximally-flat current transformer.  D W Knight.
3 Amplitude response of conventional and maximally-flat current transformers. D W Knight
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1. Prototype maximally-flat bridge 

Theoretical prototype for a 
transmission bridge with a maximally-
flat amplitude vs. frequency response at
the detector port.

The bridge is required to balance (i.e., 
give zero output at the detector port) 
when:  Z = R0

The first thing to notice about the prototype circuit above is that it is a low-frequency model.  There 
is no component to represent propagation delay and other effects that mimic transformer secondary 
parallel capacitance; there is no component to represent the self-capacitance of the LF 
compensation coil Lv ; and it is assumed that the resistor R2  has no capacitance.  Such liberties can 
be taken at this stage of the analysis because the boost capacitances Ch  and Cv  are relatively large, 
and their reactances become correspondingly small at high-frequencies.  Thus the bridge 
degenerates into a conventional resistive voltage-sampling (RVS) arrangement in the upper reaches 
of its frequency range, allowing the HF neutralising requirements to be deduced by reference to a 
simplified model.
     The current-transformer is shown with a Faraday shield.  This is done, not because a shield is 
necessary, but because it simplifies the circuit analysis4.  The shield adds stray capacitance from the 
secondary winding to ground; which, although not desirable, can be lumped with the self-
capacitance of Lv  in the high-frequency regime.  Omitting the shield introduces stray capacitance 
from the through-line to the secondary winding, which complicates the model considerably; and by 
reducing the average capacitance per unit length of the through-line, gives rise to a mis-match that 
manifests itself as an increase in the apparent secondary parallel capacitance of the transformer.  
Notice also that the shield is earthed on the generator side of the transformer.  This means that the 
capacitive current associated with the load-side part of the shield flows twice through the core, 
forward on the centre conductor and back on the shield, so that the overall effect on the transformer 
output is zero.
     The current-transformer network differs from that described in the earlier reference5  by the 
inclusion of an extra resistance Rjk . The reason for the addition is that the Thévenin-equivalent 
voltage and current sampling networks must be topologically equivalent if they are to have identical
phase and magnitude characteristics.  In the Thévenin equivalent circuit for the voltage-sampling 
network, R2  is in parallel with Lv .  Hence we need a resistance in parallel with Li  in order to 
achieve a frequency-independent solution for the bridge balance condition.  Notice that this 
resistance has a double subscript.  This is because it will be resolved eventually into two resistances 
in parallel: Rj , an actual resistor; and Rk , a resistance to represent the transformer losses.  Notice 
also that, instead of including Rjk , we could place a resistance  Rjk / N2  across the transformer 
primary. 

4 Evaluation and optimisation of current transformer bridges.  D W Knight.  See: Section 19.
5 The maximally-flat current transformer.  DWK
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1.1    Condition for maximal flatness - current sampling network: 
Referring to the circuit diagram given in the previous subsection; we can write an expression for the
voltage appearing across the current-transformer secondary (Vi ) by first noting that  I =V/Z  and 
then applying the ampere-turns rule:

Vi = V Zi / ( N Z )   (1.1.1)

where Zi  represents the total load across the secondary winding (including the winding itself), i.e.:

Zi = Rjk // jXLi // ( Rh + jXCh )

(where " //  " means "in parallel with"), and N is the transformer turns ratio (N = Ns / Np ).  
Generally, the number of primary turns  Np = 1  for a current-transformer, but there is nothing in 
principle to prevent the use of several turns of thin coaxial cable.

The high-pass filtered output  Vi'  is obtained from  Vi   via a potential divider composed of  Ch  and  
Rh ,  thus:

Vi'  =  V
[ Rjk // jXLi // ( Rh + jXCh ) ]

N Z

Rh

( Rh + jXCh )
(1.1.2)

We now need to find the parameter relationship that gives the maximally-flat in-band magnitude 
response.  Since the circuit is a linear network, we can start by dividing both sides of the expression 
by V to give the response function in dimensionless form.  Inverting the function then allows the 
parallel combination of impedances to be represented as a series of admittances.  Thus:

V 

Vi'
=  N Z

┌
│
│
└

1 

Rjk

+
1 

jXLi

+
1

( Rh + jXCh )

┐
│
│
┘

( Rh + jXCh )

Rh

Multiplying out, and regrouping the terms into reals and imaginaries (noting that 1/j = -j), gives:

V 

Vi'
=

N Z

Rh

┌
│
│
└

Rh

Rjk

+
XCh

XLi

+ 1 + j ( XCh

Rjk

-
Rh

XLi
)

┐
│
│
┘

(1.1.3)

To find the reciprocal magnitude response, we take the magnitude of the expression above:

│
│
│

V 

Vi'

│
│
│

=
N |Z|

Rh
√

┌
│
│
└

( Rh

Rjk

+
XCh

XLi

+ 1 )
2

.

+ ( XCh

Rjk

-
Rh

XLi
)

2

.

┐
│
│
┘

Multiplying out gives: 
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│
│
│

V 

Vi'

│
│
│

=
N |Z|

Rh
√

┌
│
│
└

Rh²

Rjk²
+

XCh²

XLi²
+ 1 +

2Rh

Rjk

+
2XCh

XLi

+
2Rh XCh

Rjk XLi

+
XCh²

Rjk²
+

Rh² 

XLi²
-

2RhXCh

Rjk XLi

┐
│
│
┘

which can be rearranged:

│
│
│

V 

Vi'

│
│
│

=
N |Z|

Rh
√

┌
│
│
└

( Rh 

Rjk

+ 1 )
2

.

+
XCh²

XLi²
+

XCh²

Rjk²
+

2XCh

XLi

+
Rh²

XLi²

┐
│
│
┘

(1.1.4)

The four right-most terms inside the square-root bracket are frequency-dependent.  Of those 
however, the first two,  XCh² / XLi²  and  XCh² / Rjk²  will be small within the passband because  XCh²  
diminishes rapidly above the cutoff frequency,  XLi²  increases rapidly, and  Rjk²  will be relatively 
large.  This leaves us to consider the last two terms, which can be placed on a common denominator
thus:

2XCh

XLi

+
Rh²

XLi²
=

2XCh XLi + Rh²

XLi²
=

Rh² - 2 Li / Ch

XLi²

The frequency dependence of the in-band magnitude response can therefore be minimised choosing 
the circuit parameters so that:

Rh² - 2 Li / Ch = 0

Hence the boost capacitance can be calculated from the expression:

Ch = 2 Li / Rh² 1.1.5

An alternative version of this expression, which allows XCh  to be eliminated from the network 
response function once the condition for maximal flatness has been imposed, is:

XCh = - Rh² / 2 XLi 1.1.6
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1.2    Condition for maximal flatness - voltage sampling network 
Referring to the circuit diagram in section 1; the voltage Vv  is derived from an ordinary potential 
divider and can be written:

Vv = V' Z1 / (R2 + Z1 )

i.e.:

Vv   =  V'
jXLv // ( R1 + jXCv )

R2 + [ jXLv // ( R1 + jXCv ) ]

Multiplying numerator and denominator by R2  gives:

Vv   =  V'
R2 // jXLv // ( R1 + jXCv )

R2

The high-pass filtered output Vv' is derived from Vv  via another potential divider, i.e.; 

Vv' = Vv R1 / (R1 + jXCv )

Hence:

Vv' = V'
R2 // jXLv // ( R1 + jXCv )

R2

R1

( R1 + jXCv )
(1.2.1)

This expression is exactly analogous to equation (1.1.2).  Hence, by inspection, the condition for 
maximal flatness of the voltage-sampling network is:

Cv = 2 Lv / R1² 1.2.2

This can be re-stated in reactance form as before:

XCv = - R1² / 2 XLv 1.2.3
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1.3    Bridge balance conditions 
When the bridge is balanced, the arbitrary load impedance Z  is replaced by the target load 
resistance R0 .  In that condition, the outputs of the current and voltage sampling networks must be 
equal at all frequencies insofar as the model provides an accurate description of the physical circuit.
Using equation (1.1.2), we can write a condensed form of the dimensionless current transfer 
function as:

Vi'

V
=

Zi

N Z

Rh

( Rh + jXCh )
(1.3.1)

Where: Zi = Rjk // jXLi // ( Rh + jXCh )

We can also write a condensed form of the voltage transfer function (1.2.1):

Vv' =  V'
( R2 // Z1 )

R2

R1

( R1 + jXCv )

Where Z1 = jXLv // ( R1 + jXCv )

But notice here that V' is not the same as V .   There will be a voltage drop across the transformer 
primary given by:

Vii = I Zi / N²

i.e., the impedance looking into the current transformer primary will be (to a very good 
approximation) the secondary load impedance divided by the square of the turns ratio.  Vii  can be 
expressed in terms of V by using the substitution:

I = V / Z

Hence:

V' = V + Vii = V [ 1 + Zi / ( Z N² ) ]

Hence, the dimensionless voltage transfer function using the load voltage V as the reference is:

Vv'

V
=

( R2 // Z1 )

R2

R1

( R1 + jXCv )

┌
│
│
└

1 +
Zi

Z N²

┐
│
│
┘

(1.3.2)

The voltage and current transfer functions, both using V as the reference level, become equal when  
Z = R0 .  So too do their reciprocals, with the advantage that parallel impedances become sums of 
admittances.   Hence, equating the reciprocals of equations (1.3.1) and (1.3.2), and moving the 
primary voltage-drop correction to the current-network side:
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R2

( R2 // Z1 )

( R1 + jXCv )

R1

=

┌
│
│
└

1 +
Zi

R0 N²

┐
│
│
┘

N R0

Zi

( Rh + jXCh )

Rh

This, noting that  1/(a//b) = (1/a) + (1/b) ,  can be rearranged as follows:

┌
│
│
└

R2

Z1

+ 1

┐
│
│
┘

( R1 + jXCv )

R1

=

┌
│
│
└

N R0

Zi

+
1 

N

┐
│
│
┘

( Rh + jXCh )

Rh

(1.3.3)

Now notice that as  f → ∞ ,  both  XCv  and  XCh  vanish, in which case the expression degenerates 
into the balance condition for a conventional RVS bridge.   Observe also that the finite values of Ch  
and Cv  are a matter of free choice; i.e., we do not have to impose the maximal flatness condition, 
and the amount of response-shaping can be arbitrary within the constraints imposed by the circuit 
topology.   The corollary is that the the frequency tracking of the boost networks, although essential 
for balance tracking, must also be accomplished regardless of balance considerations.   It follows 
that we must impose the condition:

( R1 + jXCv ) / R1 = ( Rh + jXCh ) / Rh

so that both boost networks have the same frequency response.  Hence.:

XCv / R1 = XCh / Rh

which corresponds to a fixed capacitance ratio:

Cv / Ch = Rh / R1 1.3.4

This condition implies that when  Vv' = Vi' ,  then  Vv = Vi  ,  which means that the overall form of 
the balance condition for the maximally flat bridge is the same as for the RVS bridge at all 
frequencies, i.e., substituting (1.3.4) into (1.3.3):

R2

Z1

+ 1  =
N R0

Zi

+
1

N
(1.3.5)

Now expanding the admittances  1/ Z1  and  1/ Zi  we get:

R2

jXLv

+
R2

R1 + jXCv

+ 1  =
N R0

Rjk

+
N R0

jXLi

+
N R0

Rh + jXCh

+
1

N
(1.3.6)

Every complex expression can be arranged so that it has terms that are purely real and terms that are
purely imaginary.  When that is done, it can be treated as two separate equalities: that between the 
reals; and that between the imaginaries.  Terms with a complex denominator can be separated by 
multiplying numerator and denominator by the complex-conjugate of the denominator.  Thus 
equation (1.3.6) can be re-written:



9

R2

jXLv

+
R2 (R1 - jXCv )

R1² + XCv²
+ 1  =

N R0

Rjk

+
N R0

jXLi

+
N R0 ( Rh - jXCh )

Rh² + XCh²
+

1

N

and the real part is:

R1 R2

R1² + XCv²
+ 1  =

N R0

Rjk

+
N Rh R0

Rh² + XCh²
+

1

N

We can make a further distinction by noting that the expression above has terms that are frequency-
dependent and terms that are frequency-independent.  It can only be true at all frequencies if the 
sum of the frequency-independent terms on the left hand side is equal to the sum of the frequency-
independent terms on the right hand side (and the same applies to the frequency-dependent terms).  
Hence we can deduce the requirement:

( N R0  / Rjk ) + 1/ N = 1

i.e.:

Rjk = R0 N² / ( N-1 ) 1.3.7

In fact, the reason why Rjk  was put into the model was so that this equality could be obtained.   The 
only solution for  Rjk → ∞  occurs when  N = 1 ;  i.e., by inspection of (1.3.6), when the  1/ N  term 
on the right-hand side cancels the 1 on the left-hand side.

Using (1.3.7) in (1.3.6), the balance condition now simplifies to:

R2

jXLv

+
R2

R1 + jXCv

=
N R0

jXLi

+
N R0

Rh + jXCh

(1.3.8)

This relationship must remain true in the limit of infinite frequency; i.e., when  XL → ∞  and  
XC → 0 ,  hence:

R2 / R1 = N R0 / Rh    (1.3.9)

It can also be seen, by inspection of (1.3.8), that a frequency independent solution exists only when:

R2 / Lv = N R0 / Li

i.e.,

Lv / Li = R2 / ( N R0 )

and only when:

( R1 + jXCv ) / R2 = / ( Rh + jXCh ) / ( N R0 )

But we already know from (1.3.9) that  R1 / R2 = Rh / ( N R0 ) .   Hence: 
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XCv / R2 = XCh / ( N R0 )

i.e.:

Ch / Cv = R2 / ( N R0 )

Hence, collecting the various relationships:

R1

Rh

=
Lv

Li

=
Ch

Cv

=
R2

N R0

(1.3.10)

A further important balance relationship comes from equation (1.3.6) in the limit where  XL → ∞  
and  XC → 0 :

R2

R1

+ 1  =  N R0

┌
│
│
└

1

Rjk

+
1

Rh

┐
│
│
┘

+
1

N
(1.3.11)

Now let us define a resistance Rik  to represent the parallel combination of Rh  and Rjk ; i.e.: 

Rik = ( Rh // Rjk )

Substituting this into (1.3.11) and subtracting 1 from each side gives:gives:

R2

R1

=
N R0

Rik

+
1

N
- 1 Transformer constant (1.3.12)

This is the principal voltage-sampling ratio or 'transformer constant'.  It appears explicitly in the 
analysis of the conventional RVS bridge, in which the boost capacitors are shorted-out and the 
secondary load (including core losses) has degenerated into a single resistance.  It will be required 
in section 3, where we will use the simplified RVS model as a basis for the high-frequency analysis.
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1.4    Low-frequency drop-off 
Equations (1.3.7) and (1.3.10) tell us how to determine component values in the event of arbitrary 
choices of (say) N , R2 , Rh and Li ;  but merely having the ability to balance the bridge does not 
constitute a proper design procedure.  We now need to specify the permissible degree of detector 
sensitivity drop-off at the lowest frequency of operation, and use it to determine the required 
amount of transformer secondary inductance.  To that end, we can start by defining a low-frequency
drop-off factor (i.e., the relative magnitude response):

ηf  =
Sensitivity at frequency f

Sensitivity at high frequencies

For the purposes of this comparison, sensitivity is defined as the magnitude of the detector port 
output when everything except frequency is held constant.  Recall also that:

|Vdet| = |Vv' - Vi'|

Hence:

ηf  =
| Vv'(f) - Vi'(f) |

| Vv'(∞) - Vi'(∞) |

But the voltage and current sampling networks have the same frequency response.  Therefore, for a 
given degree of mismatch at the load port,  Vv'  will remain in constant proportion to Vi' regardless 
of frequency.  This means that we can evoke a complex constant,  g  say, (where g is a function of 
Z) that allows is to write the magnitude response by reference either to the current-sampling 
network output, or to the voltage-sampling network output, but without the need for both.  This 
assertion can be proved by examining equation (1.3.1) and noting that the point in establishing the 
balance condition is to arrange matters so that:

Vv' = V { Zi Rh / [ N ( Rh + jXCh ) ] } / R0 

and

Vi' = V { Zi Rh / [ N ( Rh + jXCh ) ] } / Z

so that when  Z → R0 ,  Vv' - Vi' = 0

Hence if we define:

g = R0 / Z

we get:

ηf  =
| g Vi'(f) - Vi'(f) | 

| g Vi'(∞) - Vi'(∞) |
=

| Vi'(f) ( g - 1) | 

| Vi'(∞) ( g - 1) |
=

| Vi'(f) | 

| Vi'(∞) |
(1.4.1)
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The reciprocal of the relative magnitude of the current-sampling network output was given earlier 
as equation (1.1.4).  Identifying Vi' as Vi'(f) , this becomes:

│
│
│

V

Vi'(f)

│
│
│

=
N |Z|

Rh
√

┌
│
│
└

( Rh

Rjk

+ 1 )
2

.

+
XCh²

XLi²
+

XCh²

Rjk²
+

2XCh

XLi

+
Rh²

XLi²

┐
│
│
┘

(1.4.2)

where the frequency dependence becomes explicit upon expansion of the reactances.  If we apply 
the condition for maximal flatness (equation 1.1.6), i.e.:

XCh = - Rh² / 2 XLi       

then the last two terms of (1.4.2) vanish and we get:

│
│
│

V 

Vi'(f)

│
│
│

=
N |Z|

Rh
√

┌
│
│
└

( Rh

Rjk

 + 1 )
2

.

+
XCh²

XLi²
+

XCh²

Rjk²

┐
│
│
┘

(1.4.3)

And if we let  f → ∞ ,  so that  XL → ∞  and  XC → 0 ,  we get:

│
│
│

V

Vi'(∞)

│
│
│

=
N |Z|

Rh
√

┌
│
│
└

( Rh

Rjk

+ 1 )
2

.

┐
│
│
┘

This can be simplified by taking the (positive) square-root of the square and noting that

( Rh + Rjk ) / Rh Rjk = 1 / ( Rh // Rjk )

Thus:

│
│
│

V 

Vi'(∞)

│
│
│

=
N |Z|

Rh // Rjk

(1.4.4)

This, of course, is an expression for the relative output of an ideal current-transformer (infinite 
secondary reactance), where  Rh // Rjk   is the secondary load resistance.  Now, to obtain an 
expression for the drop-off factor (1.4.1) (and noting that we are dealing with reciprocal transfer 
functions), we divide equation (1.4.4) by equation (1.4.3).

ηf  =
Rh

Rh // Rjk / √
┌
│
│
└

( Rh

Rjk

+ 1 )
2

.

+
XCh²

XLi²
+

XCh²

Rjk²

┐
│
│
┘

(1.4.5)

This tells us that the load impedance Z  makes no difference to the frequency response.  The turns 
ratio of the current transformer (N) does make a difference however, even though it does not appear 
explicitly; firstly, because the number of secondary turns ( Ns ) dictates Li  once the transformer core
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has been selected; and secondly, because N determines Rjk  according to equation (1.3.7).

Rjk = R0 N² / ( N-1 )

Notice also that:

1 + Rh / Rjk = Rh / ( Rh // Rjk )

so that  ηf  → 1  as  f → ∞ .

What we require for design purposes however, is to be able to specify a drop-off factor and find the 
frequency at which it occurs.  This will enable us to adjust the circuit parameters (particularly Li ) 
until the specified maximum drop-off is achieved at or below the minimum required working 
frequency.  This entails solving (1.4.5) for  f , with  ηf   as an independent (input) variable.  We start 
by squaring (1.4.5) and taking the reciprocal:

1

ηf²
 =  1 +

┌
│
│
└

XCh² 

XLi²
+

XCh²

Rjk²

┐
│
│
┘

/
┌
│
│
└

Rh

Rh // Rjk

┐
│
│
┘

2

.

It will simplify matters from now on if we use the substitution:

Rik = ( Rh // Rjk )

Where Rik  (introduced earlier) represents the total resistive load on the transformer in the high 
frequency limit.  Thus:

1 

ηf²
- 1 =

Rik²

Rh²

┌
│
│
└

XCh²

XLi²
+

XCh²

Rjk²

┐
│
│
┘

The number of variables can also be reduced by using the maximal flatness condition (1.1.6) as a 
substitution, i.e.:

XCh = - Rh² / 2 XLi

Thus:

1 

ηf²
- 1  =

┌
│
│
└

( Rh²

2XLi²
)

2

.

+ ( Rh²

2XLi Rjk
)

2

.

┐
│
│
┘

Rik²

Rh²

This can be put into standard form:
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Rh²

4XLi
4

+
Rh²

4XLi² Rjk²
- ( 1

ηf²
- 1 ) 1

Rik²
=  0

which shows that it is a quadratic equation in  ( 1 / XLi )² .   In this case, the process of solving it will
be assisted by multiplying throughout by  4 / Rh²  :

1

XLi
4

+
1

XLi² Rjk²
-

4

Rh² Rik²
( 1

ηf²
- 1 ) =  0

Hence  a = 1 ,  b =1 / Rjk²   and   c = -[4/ (Rh² Rik² ) ] [ ( 1/ηf² ) - 1 ]

and the solution is:

(1/ XLi )² = [ -b ±√( b² - 4ac ) ] / 2a 

i.e.:

1 

XLi²
=

-1 

2Rjk²
± ½ √

┌
│
│
└

1 

Rjk
4

+
16

Rh² Rik²
( 1

ηf²
- 1 )

┐
│
│
┘

This has two solutions;  but  1 / XLi²   is positive, and the only way in which a positive right-hand 
side can be obtained is by taking the positive square root.  Hence (also multiplying ½ into the 
square-root bracket):

1 

XLi²
=

-1

2Rjk²
+ √

┌
│
│
└

1 

4Rjk
4

+
4

Rh² Rik²
( 1

ηf²
- 1 )

┐
│
│
┘

Now let us identify

XLi = 2πfη Li

where fη is the lower frequency limit at which the output has diminished by a factor of ηf .  Hence:

fη = 1 / 2π Li √ { -1

2Rjk²
+ √

┌
│
│
└

1

4Rjk
4

+
4

Rh² Rik²
( 1

ηf²
- 1 )

┐
│
│
┘

} (1.4.6)

The equation above tells us that the lower frequency limit is inversely proportional to the 
transformer secondary inductance.
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Now, recalling that  Rik = ( Rh // Rjk ) ,  notice that when  Rjk → ∞ ,  Rik → Rh .  In that limit, equation
(1.4.6) reduces to:

fη =
Rh

(2√2)π Li 
4 √[ ( 1/ηf² ) - 1  ]

(1.4.7)

This expression is still a fair approximation to fη  because it is intended that Rjk  should be relatively 
large.  More importantly however, it brings out the major influences, which are that fη  can be 
reduced either by increasing Li  or by reducing Rh .

Given that Rjk  is finite however, equation (1.4.6) falls into its most convenient form when we 
forcibly remove the factor  1/(4Rjk

4 )  from the second square-root bracket, and then remove the 
factor 1/(2Rjk² ) from the first square root bracket.  This operation (noting that  2/√2 = √2 ) gives:

fη =  Rjk / (√2)π Li √
┌
│
│
└

-1 + √ ( 1 +
16 Rjk

4 [ (1/ηf²) - 1]

Rh² Rik²
)

┐
│
│
┘

(1.4.8)

where:

Rik = ( Rh // Rjk )

and (from equation 1.3.7):

Rjk = R0 N² / ( N - 1 )
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1.5    Evaluating candidate transformers 
The secondary inductance of the current transformer is derived from the number of turns according 
to the expression:

Li = AL Ns²

where AL  is the inductance factor of the core (either taken from the manufacturer's data sheet or 
preferably measured), and Ns  is the number of secondary turns.  Also, from equation (1.3.7), we 
have:

Rjk = R0 N² / ( N-1 )

We can use these substitutions in (1.4.8) to obtain an expression that can be used to determine the 
number of turns that must be wound on a given transformer core in order to achieve a desired low-
frequency limit.  For a transformer with a 1-turn primary, where  Ns = N ,  we get:

fη =  R0 / (√2)π AL (N-1) √
┌
│
│
└

-1 + √ ( 1 +
16 R0

4 N8 [ (1/ηf² ) - 1 ]

( N-1)4 Rh² Rik²
)

┐
│
│
┘

(1.5.1)

If the transformer has more than one turn in the primary, fη is multiplied by a factor:

N² / Ns² = ( 1/ Np )²

This might make it look as though adding more turns to the primary is beneficial, but in fact, 
increasing Np  reduces N and causes fη  to increase slightly overall.  Hence there is probably no 
advantage in using a multi-turn primary unless very high sensitivity (very low N) is required.  (For 
more discussion of multi-turn primaries see section 1.10).

Equation (1.5.1) can be made more tractable for calculation purposes by using the identity: 

Rik = ( Rh // Rjk )

i.e., if we adopt Rik  (the total resistive load on the current-transformer) as a principal design 
parameter, we can eliminate Rh  using:

1 / Rh = (1 / Rik ) - (1 / Rjk )

Substituting for Rjk  using (1.3.7) we get:

1 / Rh = (1 / Rik ) - [ (N-1) / ( R0 N² ) ]

which can be put on a common denominator:

1 / Rh = [ R0 N² - (N-1) Rik ] / ( Rik R0 N² )

Using this substitution in (1.5.1) gives:
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fη =  R0 / (√2)π AL (N-1) √
┌
│
│
└

-1 + √ ( 1 +
16 R0² N4 [R0 N² - (N-1)Rik ]²  [(1/ηf²) - 1 ]

(N-1)4 Rik
4 )

┐
│
│
┘

which can be rearranged to give:

fη =  R0 / (√2)π AL (N-1) √ { -1 + √
┌
│
│
└

1 +
[ (1/ηf²) - 1 ] 16 N4 R0²

(N-1)² Rik²
( N² R0

(N-1) Rik

- 1 )
2

.

┐
│
│
┘

}
Noting the recursive nature of the last term in the inner square-root bracket, this expression can be 
put into a form suitable for two-step calculation.  First we define, say:

U = N² R0 / [ (N-1) Rik ]  . . . . . . . . . . . . . (1.5.3)

    = Rjk / Rik 

    = 1 + Rjk / Rh

Then:

fη =
R0

(√2)π AL (N-1) √{ -1 + √[ 1 + [ (1/ηf²) - 1 ] 16 U² (U-1)² ] }
(1.5.2)
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1.6   Quadrature point 
Since the maximally-flat voltage and current sampling networks are second-order high-pass filters, 
their outputs at frequencies below the working range can be phase-shifted (relative to the generator)
by more than +90°.  Hence, at frequencies below the point at which +90° quadrature occurs, any 
phase analysis carried out will require that 180° is added to the result returned by an inverse-tangent
function-call.

For the special case when  Rjk → ∞ ,  the quadrature point coincides with the lower -3 dB point.  
This is easy to demonstrate by noting that the relative voltage output of a network at the -3 dB point
is 1/√2 .  When  ηf  = 1/√2 ,  (1/ηf²) - 1 = 1 .  Putting this into equation (1.4.7), and allocating the 
symbol fx  to the phase-crossover frequency, we get:

fx = Rh / { (2√2)π Li }

where, from equation (1.1.5); 

Rh = √(2 Li / Ch )

Hence:

fx = 1/ [ 2π √( Li Ch ) ]

For the general case when Rjk  is finite, the quadrature-point frequency can be determined from the 
reciprocal current-transformer response function:

V

Vi'
=

N Z

Rh

┌
│
│
└

Rh

Rjk

+
XCh

XLi

+ 1 + j ( XCh

Rjk

-
Rh

XLi
)

┐
│
│
┘

given earlier
as (1.1.3)

The phase angle φ (say) of a phasor in the form  a+jb  is given by  Tanφ = b/a .   Here however, we 
have the reciprocal of a relative voltage, i.e. a phasor in the form:

1 / ( a + jb ) = ( a - jb ) / ( a² + b² )

Hence the phase tangent in this case is given by:  Tanφ = -b/a .  Notice also that (1.1.3) is not quite 
in the  a+jb  form because the main load impedance Z is complex.  Since the tangent is a ratio 
however, Z is cancelled-out; which tells us that the network phase response (as distinct from the 
actual phase of the output) is not affected by the load.  Thus the phase response is given by:

Tanφ =

┌
│
│
└

Rh

XLi

-
XCh

Rjk

┐
│
│
┘

/
┌
│
│
└

Rh

Rjk

+ 1 +
XCh

XLi

┐
│
│
┘

The quadrature point occurs when  Tanφ → ∞ ,  i.e., when the denominator of the expression above 
goes to zero.  Hence, at the quadrature point:
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Rh

Rjk

+ 1 +
XCh

XLi

= 0
Where  XLi = 2πfx Li

  and     XCh = -1/( 2πfx Ch )

 Hence, expanding the reactances and rearranging:

fx = 1/ { 2π √[ Li Ch ( 1 + Rh / Rjk ) ] } 1.6.1

and the phase angle can be calculated using:

φ = Arctan

┌
│
│
└

( Rh

XLi

-
XCh

Rjk
) / ( Rh

Rjk

+ 1 +
XCh

XLi
)

┐
│
│
┘

+ n × 180 [degrees]

Where  n = 0  when  f > fx ,  and  n = 1  when f <  fx .
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1.7   Preliminary design calculations 
Shown below is a snapshot of a spreadsheet calculation ( maxflat_prelim.ods ).  This determines 
the number of turns that must be wound on a transformer core having an AL  of 67 nH/turn2  in order
to meet various low-frequency drop-off criteria (a single-turn primary winding is assumed).  The AL 

value was selected on the basis that the Amidon6  FT50-61 core has a published AL  of 
68.8 nH/turn2, but small toroidal transformers typically have a leakage inductance of about 1% to 
2%; so the coupled secondary inductance of the transformer will be about 0.98 of the total 
inductance.  Since the published AL  has a tolerance of ±25%, there is no point in resorting to 
decimal places.  It is, of course, best to give AL  as 0.98 of an actual measurement, but the published 
value has to suffice until the experimental work begins.
     The only other input parameters required for the part of the calculation shown are the bridge 
target load resistance (R0 = 50 Ω, as usual), and the total resistive secondary load (Rik ) for which 
50 Ω is also a reasonable starting value.
     The calculation tells us that for cores in the middle of the tolerance range, and assuming a 
working frequency range of 1.6 MHz and above; the LF drop-off can be kept within 1% by using a 
12-turn transformer (with a small downward adjustment of Rik ), or within 2% by using an 11-turn 
transformer, or within 5% by using a 10-turn transformer.
     Notice incidentally, that the -3 dB frequency is slightly different from the quadrature frequency 
(fx ) due to the finite value of Rjk .

Input parameters: R0 = 50 Ω Rik = 50 Ω AL = 67 nH / turn²

6 http://www.amidoncorp.com/
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Formulae used (see open document spreadsheet file maxflat_prelim.ods ) Equation

Li = AL N²

U = N² R0 / [ (N-1) Rik ] 1.5.3

fη = R0 / [ (√2)π AL (N-1) √{ -1 + √[ 1 + [ (1/ηf²) - 1 ] 16 U² (U-1)² ] } ] 1.5.2

Rjk = R0 N² / (N-1) 1.3.7

Rh = Rjk Rik / ( Rjk - Rik )

Ch = 2 Li / Rh² 1.1.5

fx = 1/ { 2π √[ Li Ch (1 + Rh / Rjk ) ] } 1.6.1
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1.8   Losses in the current-sampling network 
It was mentioned earlier, that the resistance Rjk  directly in parallel with the current-transformer 
secondary winding was given a double subscript because it is a combination of resistive losses in 
the transformer core ( Rk ) and an actual resistor to make up the difference ( Rj ); i.e.:

Rjk = Rj // Rk

This means that we need to make an estimate for Rk  in order to determine Rj .
     In a separate article7, a formula relating the transformer parallel loss-resistance to the transfer 
efficiency factor was given as:

Rk = k' Ri / ( 1 - k' )

where  Ri  is the load on the transformer during the efficiency measurement, and  k'  is the factor by 
which the output voltage falls short of that of an ideal transformer.  It was found that for 
transformers wound on type FT50-61 toroids, with 8 to 12 turns on the secondary and a 1-turn 
primary,  k'  was about  0.965 ±0.01 at 30 MHz  when  Ri  was 50 Ω.
     For the purpose of designing ordinary transmission bridges, it is sufficient to assume that  k'  
does not depend on frequency and adopt a value equivalent to the worst case.  For the maximally-
flat bridge however,  Rjk  is a low-frequency balance-tracking parameter (albeit a minor one) and so 
we need to adopt a  k'  value that is appropriate for the region in which the high-pass network does 
its work.  This, presuming that we are designing with the HF spectrum in mind, is somewhere in the
region from 2 MHz to 4 MHz.

Shown below is the graph of complex permeability for type 61 ferrite:

7 Current transformer efficiency factor (DWK)
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From the graph we can see that the material is entering a dispersion region on moving upwards 
through the HF spectrum; which means that we can expect greater efficiency at 3 MHz than at 
30 MHz.  It is extremely difficult to convert this information into an accurate value for k', but an 
educated guess that will not be far from the mark says that k' at 3 MHz will be somewhere between 
0.98 and 0.99.  It is reasonable therefore to model the maximally-flat bridge on the basis that 
k' = 0 .985 ±0.005 ,  an assumption that has the virtue of placing the upper edge of the 99.7% 
confidence interval at 1.  Taking  k' = 0.985 ±0.005 ,  we get:

Rk = 50 k' / ( 1 - k' ) = 3283 (+1667, -833) Ω

or, taking the average of the asymmetric uncertainty:

Rk = 3283 ±1250 Ω

This estimate is, of course, crude; but there are various reasons for supposing that the uncertainty 
will not matter.  Firstly, in the spreadsheet calculation discussed above, it was found that there was 
very little difference between the -3 dB point and the phase crossover frequency.  This means that  
Rjk  has only a small effect on the frequency response.  Secondly,  Rk  is a lot larger than the various 
calculated values for  Rjk  (600 Ω  to 800 Ω for viable designs); which means that  Rj  will be only a 
little greater than  Rjk .  The overall uncertainty of an asymmetric parallel combination is weighted 
towards the uncertainty in the lowest-value component.  Hence, it appears doubtful that there will 
be any need to adjust  Rj  on test.  For those who have the facility to measure the impedance of the 
secondary winding in the 1.6 MHz to 4 MHz region moreover; it is possible to obtain a fair estimate
for  Rk  directly and so refine the value for  Rj .

Although the estimation procedure given above is rough, it nevertheless allows us to split the 
transformer load into its three resistive components  Rh ,  Rj  and  Rk .  This puts a value on the 
resistor  Rj ; and also, if we care to specify the maximum power to be transmitted through the 
bridge, allows us to calculate the resistor power ratings.
     When calculating resistive losses, it is sensible to do so in the worst case.  This occurs when all 
of the reactances have vanished from the system, i.e., in the high-frequency limit of the prototype 
model when  XLi → ∞  and  XCh → 0 .  We will start by allocating the symbol  P0  to the maximum 
transmitted power; i.e.,  P0  is the power dissipated in the main load resistance  R0  when the 
generator is operating at the design maximum output level and the load is purely resistive.  We 
obtain the voltage appearing across  R0  thus:

V = √( P0 R0 )

It is often convenient to adopt  P0 = 100 W,  firstly because this is a reasonable design criterion for 
high-sensitivity transmission bridges, and secondly, because all of the power losses calculated from 
it are then in %.  When  P0 = 100 W  and  R0 = 50 Ω ,  V = 70.7 V RMS.
     From equation (1.1.1), the voltage across the current transformer secondary winding when all 
reactances have disappeared is:

Vi = V Rik / ( N R0 )

Hence the maximum power dissipated in (say)  Rh  is: 

Ph = Vi² / Rh
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i.e.:

Ph = P0 Rik² / ( N² R0 Rh )

and so on.

On the basis of the discussion above, the spreadsheet calculation can be extended as follows:

Additional input parameters: k' (or Rk )  ,  P0

Formulae: See maxflat_prelim.ods for actual implementation

Rk = 50 k' / ( 1 - k' ) Nominal core loss resistance.

Rj = Rk Rjk / ( Rk - Rjk ) Secondary direct shunt resistance

Pk = P0 Rik² / ( N² R0 Rk ) Nominal core loss

Pj = P0 Rik² / ( N² R0 Rj ) Power in Rj

Ph = P0 Rik² / ( N² R0 Rh ) Power in Rh

Pik = Ph + Pj + Pk Total power in current sampling network.



25

1.9   Trial voltage-sampling networks 
The voltage-sampling network parameters are essentially scaled versions of the current-network 
parameters, but there is a compromise involved in the choice of the scaling ratio.  The problem is 
that if we make the upper voltage-sampling resistance  R2  too small, the power dissipation in the 
network will be excessive; but if we make it too large, the compensation inductance  Lv  will 
become impractically large and the stray capacitance across  R2  will make a significant contribution
to the upper arm impedance.

When all of the reactances in the system disappear, the voltage across the voltage-sampling network
is:

V' = V + Vii = V [ 1 + Rik / ( R0 N² )  ]

but

V = √( P0 R0 )

hence

V' = [1 + Rik / ( R0 N² ) ] √( P0 R0 )

The voltage across  R2  is:

V2 = V' R2 / ( R1 + R2 )

i.e.,

V2 = [ 1 + Rik / ( R0 N² )  ] [ √( P0 R0 ) ] R2 / ( R1 + R2 )

The power in  R2  is:

P2 = V2
2 / R2

i.e.,

P2 = P0 R0 [ 1 + Rik / ( R0 N² ) ]² R2 / ( R1 + R2 )²

Similarly:

P1 = P0 R0 [ 1 + Rik / ( R0 N² ) ]² R1 / ( R1 + R2 )²

Thus the calculations can be extended to evaluate voltage-sampling networks:
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Additional input parameter:  R2 Equation

Formulae: (See maxflat_brgd.ods , sheet 1, for implementation).

R1 = Rh R2 / ( N R0 ) 1.3.10

P1 = P0 R0 [ 1 + Rik / ( R0 N² ) ]² R1 / ( R1 + R2 )²

P2 = P0 R0 [ 1 + Rik / ( R0 N² ) ]² R2 / ( R1 + R2 )²

P1+2 = P1 + P2

Lv = Li R1 / Rh 1.3.10

Cv = Ch Rh / R1 1.3.10

In the spreadsheet maxflat_brgd.ods, the row for N = 12 has been singled out for special attention. 
The value of  Rik  has been adjusted to make R0 = 50 Ω for that case. The AL  value has also been 
reduced to make the 1% drop-off point occur at 1.6 MHz; producing the information that the < 1% 
LF drop-off criterion can be met by using a core with AL ≥ 63 nH . 

It was found that, with  R2 = 2.2 kΩ ,  the maximum power dissipated in the voltage sampling 
network will be about 2% of the transmitted power.  The corresponding value for Lv  is 33 μH.  This 
is a large inductance, but the drawback is not so great as in the case of the current transformer.  The 
point is that a large transformer propagation-delay (which manifests itself as self-capacitance) 
requires invasive neutralisation arrangements; whereas the parallel capacitance of the lower 
voltage-sampling network can be balanced-out by placing capacitance across the upper voltage-
sampling arm.  Indeed, there will be situations in which it will be necessary to place additional 
capacitance across the lower network in order to offset the strays across the upper network (see 
section 3).
     As shown in the spreadsheet, if the magnetic core used for the voltage sampling network 
inductor is identical to the one used in the current transformer, then the required inductance can be 
obtained using 23 turns.  In practice, the AL values of the two cores will not be exactly the same, 
and it might be necessary to adjust the turns number accordingly.  It is also necessary to adjust the 
inductance fairly exactly in order to obtain perfect frequency-response tracking; for which reason it 
is advisable to use about 1 turn less than the nearest integer value and place a small adjustable coil 
in series to make-up the difference.  
     Note that, even if the two magnetic cores are not nominally identical, it is still advisable to use 
the same material in both.  The reason is that magnetic materials, particularly ferrites of reasonably 
high permeability, have a large temperature coefficient of permeability.  This translates into a large 
temperature coefficient of inductance; but if the two cores have the same proportionate temperature 
coefficient, which they will if the material is the same in both, then the frequency tracking will hold 
as the temperature varies above and below its value at the time of calibration.  A series adjustment 
coil, incidentally, will not make much difference to the temperature tracking as long as its 
inductance is a small part of the total.
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1.10 Multi-turn primaries 
As was mentioned during the derivation of equation (1.5.1), the expression for the drop-off criterion
fη  must be multiplied by  1/ Np²  if the current-transformer has more than one turn on the primary.  
In that case also, the secondary inductance is given by:

Li = AL Ns²

and

N = Ns  / Np

For the sake of generality, the ability to evaluate bridges that have an arbitrary number of primary 
turns has been included in the spreadsheet maxflat_mtpri.ods. Note that a bridge with a multi-turn 
primary will have a high insertion impedance and must either have a very large Lv  or dissipate a 
large percentage of the transmitted power in the voltage sampling network.  Such bridges however, 
have high detector sensitivity and so can be used with low-power generators.

Additional input parameter:   Np Equation

Formulae: (See maxflat_mtpri.ods for implementation).

N = Ns / Np

Li = AL Ns²

U = N² R0 / [ (N-1) Rik ] 1.5.3

fη = R0 / [ (√2)π AL Np² (N-1) √{ -1 + √[ 1 + [(1/ηf²)-1 ] 16 U² (U-1)² ] } ] (1.5.2) / Np²
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1.11 Overboost 
The detector amplitude vs. frequency response for the maximally-flat bridge can be plotted using 
equation (1.4.5).  It is rather more interesting however, to plot a version of the response function in 
which Ch  is allowed to vary independently.  This allows us to explore the effect of component 
tolerances, and to see whether there is any advantage in deviating from the exact maximally-flat 
condition.

The required response function is given by dividing equation (1.4.4) by equation (1.4.2):

ηf  =  (1+Rh /Rjk ) / √
┌
│
│
└

( 1+Rh /Rjk )² +
XCh²

XLi²
+

XCh²

Rjk²
+

2XCh

XLi

+
Rh²

XLi²

┐
│
│
┘

(1.11.1)

This function is shown plotted below for a candidate bridge that has been adjusted to have its 1% 
drop-off point at 1.6 MHz when the maximally-flat condition is imposed 
(see: maxflat_brgd.ods , sheet 2).
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The graph shows that when the boost capacitance is reduced below the value required for maximal 
flatness, an overboost occurs.  Specifically, for the case examined, reducing Ch  by 15% moves the 
-1% point to 1.1 MHz, and gives a response of +1% at 1.7 MHz.  Broadly, this tells us that there is 
considerable latitude in the choice of Ch , and it is best to err on the low side.  Whatever the choice 
of Ch  however, Cv  must always be kept in the correct proportion to it in order to maintain the 
frequency-independence of the balance condition.

In the graph below, a small amount of overboost has allowed the drop-off to be kept within 0.5% at 
1.6 MHz.  This particular adjustment has also kept the maximum boost (which occurs in the region 
of 3 MHz) to about 0.15 %  (see: maxflat_brgd.ods , sheet 3)

It is evident that, by judicious adjustment of circuit parameters, it would be possible to create 
networks that are flat within ±0.1% over many octaves.
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2  SPICE simulations 
a) Individual sampling networks
The circuit file maxflat_v_i.asc is used to simulate the voltages appearing on the voltage and 
current sampling networks.  It can be opened using the free simulator LTspice8.   The schematic is 
shown below.  The circuit is not wired as a bridge because the intention in this case is to plot the 
voltages separately.

The simulation confirms the theory developed in the preceding sections.  With the through-line 
terminated in the target load resistance R0 , Vv  is identical to Vi , and the two outputs Vv' and Vi' are 
identical (an underscore is used instead of a prime because apostrophes are not allowed in netlists).  
The cursor is shown placed on the curve for Vi ' at 1.6 MHz. The dB reading (obtained by dividing 
the mdB value by 1000) can be converted into relative output thus:

8 http://www.linear.com/designtools/software/   
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10-(0.08606 / 20) = 0.99      [volts per volt]

Note that there is a hump in Vv  (and Vi ) due to the falling reactance of the boost capacitor as the 
frequency is reduced.

b) Bridge-connected sampling networks
The circuit file maxflat_brg.asc has the sampling networks connected in series opposition (i.e., as a
bridge).  This configuration gives no output when the through-line is terminated in its target load 
resistance (50 Ω), and so the frequency response simulation is carried out with a mismatched load.  
The load value of  24.838693 Ω  shown in the schematic below has no significance except that it 
gives a detector output of 0 dB at 30 MHz.  This gives an easy confirmation of the point proved in 
section 1.4; which is that the line terminating impedance makes no difference to the relative 
frequency responses of the individual sampling networks, and hence makes no difference to the 
relative frequency response of the output obtained from the detector port. 

The frequency response shown in the graph below is proportionately identical (i.e., identical in 
overall shape) to that of the individual sampling networks.  Changing the main load value (R) 
changes the output level, but not the shape of the response curve.
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3. High-frequency RVS model 
To make a bridge that will balance correctly over the entire 4¼-octave short-wave spectrum, it is 
always necessary to include some kind of high-frequency compensation.  In particular; we must do 
something about the effective secondary parallel capacitance of the current-transformer, and we 
must take the parasitic capacitances of the upper and lower voltage-sampling arms into account.  All
of these capacitances will have a significant effect at high frequencies and so must be put into the 
model; but the analytical problem can be simplified by noting that they are all of the order of a few 
pF.  It follows that any low-frequency response-tailoring scheme (involving capacitances of several 
nF) will only be affected at about the 0.1% level by such tiny capacitances.  Hence we can devise 
our HF neutralisation arrangements by reference to the conventional resistive voltage-sampling 
(RVS) bridge; i.e., we can short-out any boost capacitors and forget them during this part of the 
analysis.

Shown below is an equivalent circuit for the RVS bridge with parasitic capacitances included.  The 
presence of a Faraday-shield is implied by the absence of a stray capacitance from the through-line 
to the detector port.  The circuit includes a neutralising capacitor Cn  placed in parallel with the load 
resistance.  This capacitor should be considered to represent a generic current-transformer HF 
phase-neutralisation scheme; i.e., neutralisation can be accomplished in various ways9 but, in terms 
of their effect on the balance condition, all such techniques are equivalent to the inclusion of Cn .

RVS bridge with parasitic capacitances and neutralising capacitor (Cn).

Cn  is included in advance of any analysis because it is obvious by inspection that there can be no 
frequency-independent solutions for the balance condition in the absence of a neutralisation 
network.  This point can be understood by considering the four principal impedances shown in grey 
boxes.  These, subject to transformation in the case of the primary load impedance, are analogous to
the four impedance-arms of a Wheatstone-Christie bridge.  The voltage-sampling network consists 
of an RLC network and an RC network. The current-transformer is an RLC network, and so the 
primary load must behave as an RC network if all of the frequency factors are to drop-out of the 
balance relationships.

9 Evaluation and optimisation of current transformer bridges (DWK), section 18.
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In order to find the balance conditions, we can use much the same procedure as was employed in 
section 1.3.  This involves writing expressions for Vi  and Vv  (both derived from the same reference 
voltage, V ) and equating them when the through-line is terminated in the target load resistance R0 .  
The resulting expression is then rearranged to get all of the parallel impedances into reciprocal 
form, so that each can be expanded into a series of admittances. 

In this case, our generic neutralisation method places a capacitance (actual or virtual) in parallel 
with the load, so that the total load impedance at balance is complex, i.e.:

Z0n = R0 // jXCn

Hence, by the ampere-turns rule and because  I= V / Z0n ,  the output of the current transformer is:

Vi = V Zi / ( Z0n N )

where

Zi = Rik // jXLi // jXCi

The output of the voltage-sampling potential-divider is:

Vv = V' Z1 / ( Z1 + Z2 ) 

     = V' ( Z1 // Z2 ) / Z2

where

V' = V + Vii = V [ 1 + Zi / ( Z0n N² ) ]

Z1 = R1 // jXLv // jXC1

and

Z2 = R2 // jXC2

To balance the bridge, we set Vv = Vi and cancel V.  Thus, in compact form:

[ 1 + Zi /( Z0n N² ) ] ( Z1 // Z2 ) / Z2 = Zi / ( Z0n N )

Now, taking the reciprocal, and moving [ 1+Zi /( Z0n N² )] to the right-hand side:

Z2 / (Z1 // Z2 ) = [ 1 + Zi / ( Z0n N² )] ( Z0n N ) / Zi

Multiplying-out the right-hand side gives:

Z2 / ( Z1 // Z2 ) = ( Z0n N / Zi ) + 1/N

Expanding 1 / ( Z1 // Z2 )  and  1 / Zi  gives:
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Z2

┌
│
│
└

1

Z1

+
1

Z2

┐
│
│
┘

= N Z0n

┌
│
│
└

1

Rik

+
1

jXLi

+
1

jXCi

┐
│
│
┘

+
1

N

Multiplying Z2  into the bracket gives the left hand side as  (Z2 / Z1 ) + 1 .  Then subtracting 1 from 
both sides gives:

Z2

Z1

= N Z0n

┌
│
│
└

1 

Rik

+
1 

jXLi

+
1 

jXCi

┐
│
│
┘

+
1 

N
- 1

We now need to expand Z1  and Z2 .  This is best accomplished by moving Z2  to the right-hand side,
where it becomes an admittance.  Also a certain proliferation of brackets is prevented by 
multiplying  N Z0n  into the bracket on the right-hand side before we do so:

1

Z1

=
1

Z2

┌
│
│
└

N Z0n

Rik

+
N Z0n

jXLi
+

N Z0n

jXCi

+
1

N
- 1

┐
│
│
┘

Expanding Z1  and Z2  gives:

1

R1

+
1

jXLv

+
1

jXC1

=

┌
│
│
└

1

R2

+
1

jXC2

┐
│
│
┘

┌
│
│
└

N Z0n

Rik

+
N Z0n

jXLi

+
N Z0n

jXCi

+
1

N
- 1

┐
│
│
┘

And multiplying-out the brackets [noting that  ( 1 / N ) - 1 = -( N-1 ) / N  and that  j² = -1 ]:

1

R1

+
1

jXLv

+
1

jXC1

=
N Z0n

Rik R2

+
N Z0n

jXLi R2

+
N Z0n

jXCi R2

-
N-1

N R2

+
N Z0n

jXC2 Rik

-
N Z0n

XLi XC2

-
N Z0n

XCi XC2

-
N-1

jN XC2

The full expansion requires the substitution  Z0n = R0 // jXCn . This is best accomplished by moving 
all of the terms with Z0n  as a factor to one side of the equation, then dividing both sides by  1 / Z0n . 
Thus (also recalling that XL XC = -L/C ):

┌
│
│
└

1

R1

+
1

jXLv

+
1

jXC1

+
N-1

N R2

+
N-1

jN XC2

┐
│
│
┘

┌
│
│
└

1

R0

+
1

jXCn

┐
│
│
┘

=
N

Rik R2

+
N

jXLi R2

+
N

jXCi R2

+
N

jXC2 Rik

+
N C2

Li

-
N

XCi XC2

Multiplying-out the left-hand side gives the final expansion, where all terms have dimensions of 
[1/Ω²]:
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1

R0 R1

+
1

jR0 XLv

+
1

jR0 XC1

+
N-1

N R0 R2

+
N-1

jN R0 XC2

+
1

jR1 XCn

+
Cn

Lv

-
1

XC1 XCn

+
N-1

jN R2 XCn

-
N-1

N XC2 XCn

(3.1) =
N

Rik R2

+
N

jXLi R2

+
N

jXCi R2

+
N

jXC2 Rik

+
N C2

Li

-
N

XCi XC2

The real part of this expression corresponds to the in-phase balance condition, and the imaginary 
part corresponds to the quadrature balance condition.  Equating the reals gives:

1

R0 R1

+
N-1

N R0 R2

+
Cn

Lv

-
1

XC1 XCn

-
N-1

N XC2 XCn

=
N

Rik R2

+
N C2

Li

-
N

XCi XC2

(3.2)

From this, we can see that frequency-independence of the in-phase balance conditon is obtained 
when:

1

XC1 XCn

+
N-1

N XC2XCn

-
N

XCi XC2

= 0

i.e., using XC = -1/(2πf C):

C1 Cn +
(N-1) C2 Cn

N
- N Ci C2 = 0

Dividing throughout by C2  gives:

Cn

┌
│
│
└

C1

C2

+ 1 -
1

N

┐
│
│
┘

= N Ci (3.3)

Equating the imaginaries in (3.1) gives:

1

R0 XLv

+
1

R0 XC1

+
N-1

N R0 XC2

+
1

R1 XCn

+
N-1

N R2 XCn

=
N

XLi R2

+
N

XCi R2

+
N

XC2 Rik

(3.4)

But from the requirements for low-frequency balance given earlier as equation (1.3.10):

Lv = Li R2 / ( N R0 )

Hence the terms  1/(R0 XLv )  and  N/(XLi R2 )  cancel (for which reason they are in grey above).  This
leaves only terms involving capacitive susceptance, and so using  XC = -1/(2πf C)  and cancelling  
-2πf  throughout:
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C1

R0

+
(N-1) C2

N R0

+
Cn

R1

+
(N-1) Cn

N R2

=
N Ci

R2

+
N C2

Rik

Muttiplying throughout by R2  and regrouping gives:

C1 R2

R0

+ C2 R2

┌
│
│
└

(N-1)

N R0

-
N

Rik

┐
│
│
┘

+ Cn

┌
│
│
└

R2

R1

+ 1 -
1

N

┐
│
│
┘

= N Ci (3.5)

Although, on the diagram above, only the neutralisation capacitor is marked as adjustable, any of 
the stray capacitances can be padded to a higher value if necessary.  Hence, in (3.3) and (3.5) it 
appears that we have two simultaneous equations with four adjustable parameters 
( C1 ,  C2 ,  Ci ,  Cn ).  This means that there are either an infinite number of ways in which high-
frequency balance tracking can be accomplished; or, we are missing some crucial piece of 
information.  The latter is, of course, the case; and in deducing the solution we eliminate the 
paradox.  In the limit where XLv  is very large (i.e. at high frequencies), the voltage-sampling 
network should be considered as a resistive potential-divider in parallel with a capacitive potential-
divider.  It is possible to make separate resistive and capacitive dividers that give exactly the same 
off-load output voltage, the only difference being the output impedances.  If the outputs of such a 
pair of networks are connected together, there will be no changes in the output voltages.  If the 
division ratios of the two networks are not the same however, then the combined output voltage will
vary with frequency.  Thus, in order to obtain a flat high-frequency response, we must impose the 
condition:

R2 / R1 = XC2 / XC1

i.e.:

R2 / R1 = C1 / C2 3.6

Substituting this into (3.3) gives:

Cn

┌
│
│
└

R2

R1

+ 1 -
1

N

┐
│
│
┘

= N Ci (3.7)

A check of the reasoning used in the derivation above can be had by substituting (3.7) into (3.5). 
The result, after cancellation is:

C1

R0

+ C2

┌
│
│
└

(N-1)

N R0

-
N

Rik

┐
│
│
┘

= 0

Multiplying throughout by R0 and rearranging gives:
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C1

C2

=
N R0

Rik

+
1

N
- 1

This is the transformer constant, introduced earlier as equation (1.3.12). Hence we can re-write 
(1.3.12) with this supplementary information:

C1

C2

=
R2

R1

=
N R0

Rik

+
1

N
- 1 Transformer constant (3.8)

This result confirms the deduction (3.6) and the logical consistency of the working.  Also, we can 
use it to substitute for  R2 / R1  in equation (3.7) to give:

Ci  / Cn = R0 / Rik 3.9

Now returning to equation (3.2); notice that when the high-frequency balance condition (3.3) is 
applied, equation (3.2) reduces to:

1

R0 R1

+
N-1

N R0 R2

+
Cn

Lv

=
N

Rik R2

+
N C2

Li

Multiply throughout by  R0 R2  and rearranging gives:

R2

R1

+ 1 -
1

N
-

N R0

Rik

+
R0 R2 Cn

Lv

=
N R0 R2 C2

Li

which, applying the cancellation given by equation (3.8) and then dividing throughout by R0 R2  
leaves us with:

Cn / Lv = N C2 / Li

This is an auxiliary balance condition that links the frequency response of the voltage-sampling 
network to that of the current-sampling network.  It supplements the collected balance relationships 
given earlier as equation (1.3.10).

R1

Rh

=
Lv

Li

=
Ch

Cv

=
R2

N R0

=
Cn

N C2

(3.9)

From (3.9) we obtain the additional relationship:

Cn / C2 = R2 / R0 3.10
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Hence, rather than being free to choose the various network capacitances, we find that their relative 
values must be constrained if we are to get the bridge to balance at high frequencies.  If only one of 
the capacitances is determined by practical considerations (such as the desire to keep them all as 
small as possible) then all of the others are prescribed.  This situation is remarkably different from 
that encountered when designing capacitive voltage-sampling (CVS, Douma) bridges, because the 
strays across the voltage-sampling network merely contribute to wanted capacitances in that case.   
It means that the RVS bridge, although conceptually simple in its prototype (low-frequency model) 
form, is actually the hardest to get right.

The high-frequency balance considerations have been added to the spreadsheet calculation 
maxflat_brgd.ods.  A little experimentation with the numbers confirms that the capacitance across 
the upper voltage-sampling arm (C2 ) is always the smallest of the set, and that R2  must not be too 
large if the others are to be kept within reasonable bounds.  Thus it is sensible to assume that C2 will
be the capacitance of the resistor R2 (no extra capacitance will be used in this location).  If a single 
resistor is used, then C2 will be about 0.5 pF.  This makes the other capacitances rather large.  Using
two resistors in series however reduces C2  to about 0.25 pF.  The other capacitances must then be 
padded or adjusted to their corresponding values.  In the spreadsheet, Ci  is chosen as the input value
and is adjusted to make C2  come out at 0.25 pF.

Additional input parameter:  Ci Equation

Formulae: (See maxflat_brgd.ods for implementation).

Cn = Ci Rik / R0 3.9

C2 = Cn R0 / R2 3.10

C1 = C2 R2 / R1 3.8

In the given example, R2 was chosen to be 2.2 kΩ to give about 2.1% power loss in the voltage 
sampling network (see section 1.9).  With the other parameters as before, and  C2 = 0.25 pF,  the 
remaining capacitances were:

Ci = 11.8 pF   ,   Cn = 11.0 pF   and   C1 = 3.0 pF.

In a current transformer network, the effective secondary capacitance Ci  is principally due to 
propagation delay and through-line mismatch.   It can be made considerably less than 11.8 pF by 
careful layout and construction (ca. 8 pF say) and so the transformer secondary can be padded to the
required value with a trimer capacitor.  It is also perfectly possible to place the padding across the 
transformer primary, except that the value required at the primary will be larger than that required at
the secondary by a factor of N2. 
     The capacitance C1  will be mainly provided by the self-capacitance of the coil Lv .  It might be 
difficult to get that as low as 3 pF, but a single layer toroidal winding with a gap between the ends 
will probably meet the requirement.  If not, then C2 will have to be increased slightly, e.g., by 
placing a pair of short stiff wires in proximity.

Notice, incidentally, that the final circuit leaves us with two parallel RLC networks.  If we assume 
that the generator is a short circuit, then these are:   Lv // (C1 + C2 )  and   Li // (Ci + Cn / N2 ) .  The 
'resonant' frequencies for the voltage and current sampling networks are the respectively:

f0v = 1 / [ 2π√{ Lv ( C1 + C2 ) }
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and

f0i = 1 / [ 2π√{ Li ( Ci + Cn / N2 ) }

Both of these frequencies are the same when the bridge is neutralised, and so this relationship can 
be used as a check the calculation.  The resonances however, do not affect the frequency response.  
They are firstly, heavily damped by parallel resistance; and secondly, they merely constitute the 
point at which the parallel reactive component of the network becomes open circuit. 
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Discussion
The investigation carried out in the preceding sections demonstrates the feasibility of using the 
maximally-flat current transformer network as the basis for a precision transmission bridge.  A 
serious drawback however lies in the necessity of using a resistive voltage sampling network.  In 
the passive RVS network, the amount of power abstracted from the generator is necessarily large 
(several percent of the total output) because high-frequency neutralising arrangements are difficult 
to implement unless the upper voltage sampling arm resistance is relatively low.  
     One possible way of avoiding the difficulties associated with RVS presents itself when the 
networks are used in conjunction with active circuitry.  If a power supply is available, then it is a 
simple matter to use a capacitive potential divider leading to a small broadband linear power 
amplifier (i.e., a 'video' line-driving amplifier).  The output of the amplifier might then drive a 
passive low-impedance network that tailors the frequency response to that of the current 
transformer network (i.e., a scaled-down version of the network used in the fully passive case).  The
ability to control amplifier feedback also introduces the possibility of alternative filter topologies.  
The initial capacitive voltage sampling network will benefit from inductance balance adjustment10 if
high precision is required, but the power abstracted from the RF generator will be negligible. 

DWK,  2007, 2014.  

█

10 Evaluation & Optimisation of current transformer bridges, DWK.  Section 17


