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METHODS FOR THE DERIVATION AND EXPANSION
OF FORMULAS FOR THE MUTUAL INDUCTANCE OF
COAXIAL CIRCLES AND FOR THE INDUCTANCE OF
SINGLE-LAYER SOLENOIDS '

By Frederick W. Grover

ABSTRACT

This paper gives a classification of existing inductance formulas for the general
cases indicated, and discusses the possiblity of additional formulas of each class.
A number of new formulas are developed which can be used to advantage for
certain cases. Still other formulas could be obtained, but on account of com-
plexity or poor convergence they are not likely to be useful. It is shown by
numerical examples that the inductance in any given case can be calculated by
more than one formula and to a degree or precision far beyond practical re-
quirements.
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1. INTRODUCTION

_The two most important cases for which formulas for the calcula-
tion of inductance have been derived are those of single-layer coils, or
Solenoids, and coaxial circular filaments; the former because of the
extended use of such coils in practice, and the latter because of its
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importance for the derivation of formulas for more complicated
circuits.

Exact formulas in elliptic integrals have long been known for both
cases, but to avoid the necessity of recourse to tables of integrals and
to attain greater accuracy in numerical calculations, numerous series
expansions have been developed by different investigators from
time to time. More than a score of formulas for the mutual induc-
tance of coaxial circles are included in the Bureau of Standards col-
lection @' of inductance formulas and nearly as many for the induc-
tance of solenoids, and others have been recently added to the list.
In fact, it is possible to obtain numerical values with any desired
accuracy by more than one formula in any given case.

However, the very abundance of formulas has been a source of
confusion, rather than an advantage, to one unfamiliar with the
subject. This difficulty has been very completely overcome by the .
tables of Curtis and Sparks ®, Grover ™, and of Nagaoka and
Sakurai %, in all of which the calculation of the inductance is reduced :
to simple arithmetic, making use of factors which may be taken from
the tables by simple interpolation.

But, although for practical purposes the matter is thus simplified,
nevertheless the series formulas are useful for the purpose of obtaining
formulas for more complex cases by integration, and are of interest
because of the variety of methods of expansion which they represent.

It is the purpose of the present paper to attempt a classification of -
existing formulas, to present useful formulas which have been here-
tofore overlooked, and to discuss the question of further possibilities.
Since the same fundamental theory underlies the treatment of both
coaxial circles and solenoids, both cases are included here. The case
of coaxial circles will be treated with some detail, so that it will be
necessary to refer only to points of difference in the section which
deals with the solenoid.

The bibliography appended to the article can hardly claim to
include all the work which has been published, but it is hoped that it
is sufficiently complete to prove useful.

II. MUTUAL INDUCTANCE OF COAXIAL CIRCLES
1. ELLIPTIC INTEGRAL FORMULAS

Mazxwell ® derived a formula for the mutual inductance of two
coaxial circles of radii 4 and e (fig. 1) with their planes separated by a
distance D, by obtaining the Neumann integral taken around the
circumferences of both circles. His expression involved complete ellip-
tic integrals to a modulus %, defined in equation (1) below. On this

1 The superior given in parentheses here and throughout the text relate to the reference numbers in the
bibliography given at the end of this paper.
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formula are based nearly all of the known series formulas. A second
formula was obtained from this by Maxwell ™ by applying the
well-known Landen ® transformation to reduce the modulus % to a
smaller value %,. By repeated application of the Landen transforma-
tion, an unlimited number of elliptic integral formulas might be

By

ie

Fia. 1.—Diagrammatic cross section of two coazial circles
showing dimensions
obtained with moduli both smaller and greater than those of the
Mazxwell formulas. The following are the equations connecting the
series of moduli obtained from Maxwell’s & by use of the Landen

transformation. The complementary moduli are, as usual, denoted
by primes,
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The moduli are arranged in order of decreasing magnitude, their

complementaries in order of increasing magnitude.
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There follows a list of elliptic integral formulas for the mutual

inductance thus derived in which are included for completeness
Maxwell formulas and the formula in %, also previously published.
It is believed that there are included here all of the formulas whick

the

are likely to be of use for purposes of expansion. Here, as well as 19;
what follows, formulas occurring in the Bureau of Standards collegs
tion will be designated by the numbers there given them with the
prefix I for Scientific Paper 169® add IL for Scientific Paper 320™;
Thus the Maxwell formulas are I (1) and I (2). Formulas believed

to be new will be designated by an asterisk.
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In each formula K and E denote, respectively, the complete elliptic
integrals, the modulus being in each case indicated by the subscript.

Unfortunately, the elliptic integral formulas are not well suited to
numerical calculations, even when accurate tables of elliptic integrals
are at hand. For small moduli, the mutual inductance is obtained
as the small difference of two much larger terms. For large moduli, it
is impossible to obtain the value of K accurately by interpolation
from the tables. This is illustrated by the following example for two

2

circles such that k=——2—-

The two elliptic integral terms of the forumula are given for the
modulus % and for the larger and smaller moduli %, and %,.

Modulus £, 5.08976
-4, 87061

. 21915

Modulus 2 2.781112
—~2. 701288

. 079824

Modulus &, 1. 582566
—1. 559160

. 023406
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For the still smaller modulus, k, the difference is still more difficult
to determine. With the modulus koo, Which is larger than ko, the
difference between the terms is more favorable than in any of the cases
shown, but the elliptic integral K, has to be found for the angle
89° 34’ 20”’, and can not, therefore, be obtained by interpolation from
the tables.

These difficulties may be avoided by series expansions of the elliptic
integral formulas, and of the possible types of expansion three are

important, V1z, hypergeometric, arithmetlco-geometric mean series,
and the ¢ series of Jacobi.

2. HYPERGEOMETRIC SERIES EXPANSIONS

Although existing formulas of this type have been derived by
various methods, two principal methods may be regarded as espe-
cially useful.

1. The elliptic integrals satisfy differential equations of the hyper-
geometric type, so that each of the above elliptic integral expressions
yields a different hypergeometric differential equation for the mutual
inductance. By thus obtaining the equation corresponding to the
Maxwell equation I (1), Butterworth ¢ obtained five series expansions
for the mutual inductance, four of them being essentially different.
In general four such cories could be found for each of the elliptic inte-
gral formulas by the use of this method.

2. A simpler procedure is to substitute the known hypergeo-
metric series expansions for the elliptic integrals directly into the
formulas for the mutual inductance. This procedure leads to the
same formulas as the previous method. The four expansions de-
rived from each elliptic integral formula are in powers of the corre-
sponding modulus, the complementary modulus, their ratio, and its
reciprocal.

As already pointed out the expansions of I (1) are all known.
The series in k is I (5), which was derived by the writer in 1910 and
was later found by Butterworth®, The writer has discovered
only recently that this formula was first given by Weinstein!'?, a
fact which seems to have been generally overlooked. That in &’
was first obtained ? by Weinstein I (7) and was given by Butter-
worth in the somewhat different form II (4A). The formula II (3A),
also given by Butterworth, is readily obtained from the former by &

slight transformation. The series in ]—% was first derived®® by
Havelock I (16) and later by Butterworth, in its general form 11 (54),
while the expression in 77’ due to Butterworth, is given as I1 (1A).

Only one of the expansions of the second Maxwell formula I (2)
has been published, that which appears as I (6) and involves powers
of ;. This was derived by the writer in 1910 and by Nagaoka ®®
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at about the same time. The other three of the possible expansions
which follow are of practical interest and were derived by the use
of the second method.

i B -
Writing y.1=k—ll,= ;11/1%’
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The formula (6) converges for circles at all distances, but especially

well for small values of ;;2; that is, for circles near together.
1

The expansion in powers of v,—; = 1/"‘ T3 i closely related to this.

It reads
W»—%’{(l 1)*”‘ tog ;g (e, 5)
+85" (1°gél‘% """ ] ™
the general term being (- )*** [1 3254 6 (2n— 1)] on—1 Yo, where ¥y is

the same as ¢, except that » occurs in place of ky.



494 Bureau of Standards J ournal of Research [Vol. .

This formula converges only when p;>1. -
None of the expansions of the elliptic integral formula (3) have been
published. All are readily obtained, but from the standpoint of

convergence only those in k; and 7‘% are likely to be of practical use,

and these only will be here given.

. ()
The expansion in terms of the modulus %, ( TV, is
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in which
A= 1.3.5--(2n—171°
27| T 246---2n

Formula (9) converges only for k? <—12—, but (8) converges for

circles at all distances, but especially for those where 7, is nearly
equal to 7y (distant circles). ,

The expansion of the elliptic integral formula IT (7A) in terms of
L’, was derived by the author @ and published as 11 (8A), but the
general term was not given. The complete expression may be

" written as

M=2"72{f17‘ [(log - 4) +3k, <log = —43)

5., 4 3 [ 4
+1k02(log7c—:+3)—-—4—(10g7c-:-—1)

13 5
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The general term for the even powers of k', is

1.3.5--(2 3 X
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where
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and for the odd powers the general term is
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This formula converges for all values of k', but especially well
when this quantlty is small; that is, when the circles are far apart
Of the remaining three possible expansions of II (7A) that in

v,,=7—;5— only is likely to prove itself useful. It reads
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