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2.1.  Introduction
This is the second part of an article on the subject of solenoid inductance and impedance 
calculation.  Part 1 gives a general introduction, but concentrates on the calculation of inductance 
from purely magnetic considerations.  Such calculations have traditionally been said to lead to a 
quantity known as the 'low-frequency' inductance', but the approach adopted in this work is that of 
separating internal and external inductance (where internal inductance is due to the magnetic energy
stored in the body of the conductor), so that the frequency dependence of the internal inductance 
can be taken into account.  Thus the magnetic calculation no longer leads to 'low-frequency' 
inductance, but to a frequency dependent inductance calculated from magnetic considerations.  This
corresponds to the 'equivalent lumped inductance', L, of the coil on the assumption that the current 
distribution along the length of the conductor is uniform.  
     The length-wise uniform current requirement3 is satisfied, to a good approximation, in coils used
in electrical circuits.  Hence, the calculated pure inductance, L, provides the basis for calculating 
coil impedance.  This leads to another type of inductance, the apparent inductance, L', which is 
defined as the reactance of the series-form inductor impedance divided by the angular frequency, 
2πf.  To find that impedance, we need L as a parameter, but we also need to calculate the AC 
resistance of the coil and its self-capacitance.  Note that apparent inductance is positive when the 
coil is operating below its self-resonant frequency (SRF), swaps from positive to negative at the 
SRF, and alternates thereafter as we sweep through a series of self-resonance overtones.   Lumped 
element theory is generally concerned with the operating region below the SRF.  The ratio of 
reactance to AC resistance, an important parameter in the design of filters, is trivially extracted from
the impedance calculation and is called the 'Q' (quality or goodness) of the coil.
     Since the calculation of lumped inductance and self capacitance are dealt with in separate 
documents, this article is primarily concerned with the matter of determining AC resistance and 
combining it with the other quantities to obtain the impedance and Q.

3 The current is not uinform over the wire cross-section, due to the skin and proximity effects.
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2.2  Lumped-element equivalent circuit
When designing electrical circuits, it is usual to represent an inductor as an equivalent circuit of 
idealised lumped components; specifically, an inductance, a capacitance, and one or more 
resistances.  To construct the model, we start by observing that, over a limited frequency range at 
least, the reactance presented at the terminals corresponds to that of a pure inductance in parallel 
with a capacitance.  Then we note that there are resistive losses at all frequencies, and so we put a 
resistance in series with the coil.  There will also be magnetic losses; e.g., core loss, and eddy-
current loss in nearby conductors; but there is no need for another resistance in that case because it 
can be combined with the one we have already put in.  Then finally, optionally, we allow that there 
may be dielectric losses in the wire insulation and coil former, and put a resistance in series with the
capacitance.
     We end up with the equivalent circuit shown on the right.  This model, with
suitable choice of parameters, will be found to reproduce the terminal impedance.
Note however, that all of the model elements are expected to vary with frequency
to some extent, and so are generally described by mathematical functions rather
than simple constants.  
     If we measure the impedance of a coil over a range of frequencies, we will
end up with a set of data that can be fitted to the model parameters.  It will also be the case that RCL 
can be set to zero for some types of coil, particularly those with air cores and some space between 
the turns, and three parameters will be sufficient.  This does not mean however, that parameters so 
extracted have physical significance.  Consider, for example, what might happen if we do not bother
to include the frequency variation of internal inductance in the function that produces XL .  One 
possible justification for doing that might be that the measurements are not sufficiently accurate to 
determine it; but it will also be the case that there will be some frequency dependence of the other 
parameters, particularly XCL , in which case those parameters will be adjusted in the fit to disguise 
the neglect of internal inductance.  It follows that there is a difference between fitting the data and 
the extraction of physically realistic parameters, the latter being dependent on the use of realistic 
parameter models.

The apparent inductance, i.e., the inductance that will be found by measurement at a single 
frequency (after correction for lead inductance and capacitance) is given by:

L' = XL' / 2πf

where, using the series to parallel transformation4:

XL' = [ (RL²+XL²)/XL ] // [ (RCL²+XCL²)/XCL ]

RL and RCL are usually sufficiently small that the apparent inductance L' can be calculated on the 
basis that they are both zero.  The loss resistances are however required when calculating the coil 
impedance (rather than just the reactance).

Recall that the hypothetical self-capacitance CL does not predict the true SRF of the coil, but the 
model is reasonably accurate provided that the working frequency does not approach the SRF too 
closely

4 See, for example, AC Theory, DWK, section 19.  http://g3ynh.info/zdocs/AC_theory/
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2.3  Self capacitance

Formulae for the calculation of self-capacitance are discussed in another article5.  

5 Self-resonance and self-capacitance of solenoid coils, DWK, 
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2.4  AC resistance
In the design of LC matching networks and resonators, it is generally desirable to optimise the the 
Q of the coil for the frequency range of interest.  The Q of an inductor (the component Q rather than
the circuit Q) is of course, defined as the ratio of reactance to resistance, i.e.:

Q = XL' / Rac

where XL' is the effective reactance (i.e., the reactance adjusted for the effect of self-capacitance and
other minor dispersive effects), and Rac is the frequency-dependent AC resistance of the wire.  
Maximising the efficiency of an inductor is therefore a matter of minimising Rac ; but this 
requirement is complicated by the proximity effect, and by a frequency-dependent upper limit on 
the physical size of any coil that is to be used as a lumped inductance.

The self-resonance frequency (SRF) of a coil is dependent on the length of the wire used to wind it 
and the effective velocity for an electromagnetic wave travelling along the wire.  The self-
capacitance of the coil is our way of representing this self-resonant property using lumped 
components (albeit rather inaccurately).  When all of the factors governing the helical propagation 
velocity are taken into consideration, it transpires that minimum self-capacitance is obtained when a
solenoid has a length/diameter ratio of about 1, and that self-capacitance is thereafter directly 
proportional to the coil diameter to a very good approximation.  This means that, in order to obtain 
a given amount of inductance for operation over a reasonably wide frequency range, it is necessary 
to use plenty of turns rather than a large diameter.  Using turns to obtain inductance, of course, 
involves overlapping the conductor upon itself, and this causes the AC resistance to be greater than 
that dictated by the skin effect in an isolated wire.  If we use thin wire to maintain some space 
between the turns, then we suffer from the fact that thin wires have high resistance in isolation.  If 
we use thick wire to reduce the resistance, then we suffer from the fact that resistance is increased 
by the proximity effect. From all of this there arises the need to find the compromise that constitutes
the optimum coil design for a particular application.

For an isolated wire at high frequencies, the AC resistance can be estimated using the following 
simple expressions: 

Rac = ρ ℓw / Aeff

Aeff = π (d δi - δi² )

δi = √
ρ

(π f μ(i))

where ρ is the resistivity, ℓw is the length, Aeff  is the effective cross-sectional area, d is the diameter, 
δi is the skin depth, f is the frequency, and μ(i) is the permeability of the wire material (assume μ(i) = 
μ0 for non-ferromagnetic wire).  More generally however, there are accurate formulae that work at 
any frequency, and these are discussed in a separate article6.  

The AC resistance can also be expressed as DC resistance multiplied by a skin-effect factor Ξ 
(Greek upper-case "Xi"), i.e.:

6 Practical continuous functions for the internal impedance of solid cylindrical conductors, DWK,  
http://g3ynh.info/zdocs/comps/zint/  .  See particularly, Section 12, the Rac-TED-ML formula, which is accurate to 
within 0.09%.
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Rac = Rdc Ξ

Where

Rdc = ρ ℓw / Aw

Aw = π d² / 4  being the full cross-sectional area of the wire, and using the simple high-frequency 
formula:

Ξ = d² / [4 (d δi - δi² )]

The DC resistance can either be measured or calculated.

In order to account for the proximity effect in coils, we can further modify the AC resistance by 
inclusion of a proximity factor Ψ ("Psi"), i.e., for a coil:

Rac = Rdc Ξ Ψ

Ψ being defined as the ratio of the coil AC resistance to the AC resistance of the same piece of wire 
when not wound into a coil.  This, of course, leaves us with the small problem of how to determine 
Ψ.

A study of solenoid coil losses was made by R G Medhurst7.  This work has served as the basis for 
coil AC resistance calculations ever since, and remains useful for normal engineering purposes 
provided that it is applied with due regard to its limitations.  Medhurst gave his results in the form 
of a table of Ψ values for various solenoid length / diameter and wire pitch / diameter ratios which 
is reproduced below.  Intermediate values can be obtained by interpolation.  Ψ is of course strictly 
frequency dependent, and the data are high-frequency limiting values, i.e., they can only be 
expected to give accurate results when the skin-depth is small.  In practice, accuracy of better than 
3% can be expected when the ratio of skin-depth to wire diameter δi/d is less than 1/10.  For HF 
radio purposes, it is useful to remember that the skin-depth in copper is 50 μm at 1.75 MHz; and so,
in this context, the high-frequency regime is always operative for wires of 0.5 mm diameter or 
greater. 

Proximity factor Ψ
This gives the ratio of coil AC resistance to the AC resistance of the straightened wire, taken 
from Medhurst's 1947 paper (Medhurst used the symbol Φ for this factor, but since Φ is used almost
universally elsewhere to represent magnetic flux, the notation has been changed here).  Ψ values 
derived from Medhurst's empirical data are given in bold.  Outside the top-left rectangle, 
Medhurst's measurements are in agreement with Butterworth's theory when the transverse 
magnetic-field losses are neglected, and so the Ψ values for long coils and widely spaced coils were
obtained by calculation.  For coils wound on formers of low-loss dielectric, the data can be expected
to predict the AC resistance to better than 3% in the high-frequency regime, i.e., when δi/d < 0.1 and
the frequency is below the SRF.  Strictly the values in the table are only applicable to coils having a 
large number of turns (i.e., N ≥ 30). For small N, an end correction is required (see text).

p/d is the coil winding-pitch / wire-diameter ratio.  ℓ/D is the solenoid length / diameter ratio.

7  H. F. Resistance and Self-Capacitance of Single-Layer Solenoids", R G Medhurst (GEC Research Labs.). 
Wireless Engineer, Feb. 1947, p35-43; Mar. 1947, p80-92. + corresp.; June 1947, p185; Sept. 1947, p281.
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p/d →
ℓ/D ↓  

1 1.111 1.25 1.429 1.667 2 2.5 3.333 5 10

0 5.31 3.73 2.74 2.12 1.74 1.44 1.20 1.16 1.07 1.02

0.2 5.45 3.84 2.83 2.20 1.77 1.48 1.29 1.19 1.08 1.02

0.4 5.65 3.99 2.97 2.28 1.83 1.54 1.33 1.21 1.08 1.03

0.6 5.80 4.11 3.10 2.38 1.89 1.60 1.38 1.22 1.10 1.03

0.8 5.80 4.17 3.20 2.44 1.92 1.64 1.42 1.23 1.10 1.03

1 5.55 4.10 3.17 2.47 1.94 1.67 1.45 1.24 1.10 1.03

2 4.10 3.36 2.74 2.32 1.98 1.74 1.50 1.28 1.13 1.04

4 3.54 3.05 2.60 2.27 2.01 1.78 1.54 1.32 1.15 1.04

6 3.31 2.92 2.60 2.29 2.03 1.80 1.56 1.34 1.16 1.04

8 3.20 2.90 2.62 2.34 2.08 1.81 1.57 1.34 1.165 1.04

10 3.23 2.93 2.65 2.27 2.10 1.83 1.58 1.35 1.17 1.04

∞ 3.41 3.11 2.815 2.51 2.22 1.93 1.65 1.395 1.19 1.05
Table 4.1

Prior to the publication of Medhurst's paper, handbook formulae for the calculation of coil 
resistance were usually based on the theoretical work of S. Butterworth.  Medhurst showed that 
Butterworth's predictions are seriously inaccurate for short coils with closely-spaced turns; a 
problem that he attributed to faulty assumptions regarding the transverse magnetic field (i.e., the 
field at right-angles to the coil axis).  Butterworth modelled the coil losses by assuming a uniform 
current through the coil and resolving the field into transverse and axial components.  He then 
solved an infinite set of linear equations by successive approximation to determine the losses in an 
infinitely long solenoid.  Using this as his starting point, he derived end-corrections, once again 
resolved into axial and transverse components, in order to modify his model to describe practical 
coils.  The various axial and transverse field components were replaced by their RMS values before 
being added together to produce a table of Ψ = Rcoil /Rwire.  Medhurst's table above is a corrected 
version of Butterworth's table.
     The problem with Butterworth's theory was that it predicted infinite losses for coils with closely 
spaced turns, and unrealistically high losses otherwise, except for the case of a very long coil.  
Medhurst observed that the transverse field disappears when the coil is infinitely long (think of the 
field-lines around a very long bar-magnet - all are parallel to the axis), and so deduced that the 
errors were due to an excessive contribution from the transverse field.  Nowadays, we might also 
observe that the high-frequency properties of an inductor are best deduced by consideration of 
electromagnetic waves travelling along the wire, and using the notion of energy in transit, it is 
obvious that an accurate description of the coil behaviour requires Maxwell's equations, not 
magnetostatics.  Qualitatively this implies that, for a given propagation mode, the magnetic field at 
any point is locked at right angles to the electric field; and so, notwithstanding the numerous 
approximations used, there are constraints on the field pattern beyond those envisaged in 
Butterworth's theory.  Medhurst sidestepped this problem by dropping the transverse magnetic 
component completely, greatly increasing the range over which the calculated losses were in 
agreement with experiment.  For the area in which disagreement remained, i.e., the top left 
rectangle in table 4.1 above, he filled in the table with experimentally obtained values.  
Interestingly, from all of this, we can deduce that the principal electromagnetic propagation mode in
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a long solenoid coil has its electric vector very-nearly perpendicular to the coil axis.
     The Medhurst-Butterworth proximity factor provides a quick and easy method for estimating the
losses in coils operating in the high-frequency regime, but it is by no means the whole story.  There 
is, in particular, an unquantified frequency-dependence as a coil passes from the low-frequency to 
the high-frequency regime.  On this matter, it is interesting to note that the rearrangement of field 
patterns that occurs in this interval is related to the change in effective current-sheet diameter from 
D0 to D∞.  In the author's article on internal impedance, it was observed that the skin-effect and the 
internal inductance of a wire are derived from the real and imaginary parts of the internal 
impedance.  Here we should note that the proximity effect also has real and imaginary parts, and the
proximity factor and the frequency dependence of the effective current-sheet diameter are thus 
related.  It should therefore be possible to predict the high-frequency inductance from the proximity 
factor (or vice versa).  The author is unaware of any rigorous formula enabling this to be done (i.e., 
a theoretically justified expression for the elusive D∞ in terms of Ψ ), but it is possible that 
Butterworth's approach of resolving the problem into a long-coil formula with end corrections will 
work.  We might also make the pragmatic observation that just about any function that moves the 
effective diameter away from D0 and towards D0-d (i.e., the inside diameter) as Ψ increases will 
improve the accuracy of an inductance calculation.
     A more recent study of solenoid AC resistance was given by Fraga et al8.  This was a theoretical 
investigation applicable to the long solenoid case, presenting some difficulty in its integration with 
the techniques discussed here.  An interesting outcome however, is that the skin effect and the 
proximity effect are not theoretically separable.  To treat the subject correctly, the skin effect must 
be replaced by a modified skin effect which includes the proximity effect.  The implication is that 
the two factors which modify the DC resistance act in concert and give rise to a single dispersion 
region; i.e., the onset of the high-frequency resistance regime, and the associated drop in 
inductance, occur in the same part of the spectrum for both skin and proximity effects.

End correction:
The Ψ values given in table 4.1 are strictly applicable only in the case where the number of turns in 
the coil, N, is large.  Medhurst offered a tentative but plausible end-correction for coils with less 
than 30 turns, which can be understood as follows.

For a coil with a large number of turns we can write a formula for the AC resistance of a single 
turns as:

Rac / N = Rdc Ξ Ψ / N

This expression can be taken to be true for turns in the middle region of any coil, but for the two 
turns at the ends of the coil, which lack an adjacent turn on one side, the proximity effect will be 
reduced by about a factor of 2.  Hence, we should think of a coil as being made up of N-2 turns 
subject to the full proximity effect, and 2 turns subject to half the proximity effect of the others.  
Thus the expression for AC resistance becomes:

Rac = Rdc Ξ [ (N-2)Ψ + 2Ψ/2 ]/N

i.e.,

Rac = Rdc Ξ Ψ (N-1)/N (4.1)

8 Practical Model and Calculation of AC resistance of Long Solenoids. E. Fraga, C Prados, and D.-X Chen. IEEE 
Transactions on Magnetics, Vol 34, No. 1. Jan 1998. 
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The end correction (N-1)/N will make practically no difference if N is large, and so (4.1) becomes 
the preferred expression for the AC resistance of a coil.

Asymptotically correct formula for frequency dependence of proximity factor:
Modelling Rac across the dispersion region.

As is also the case for internal inductance, the transition from low to high frequency behaviour 
occurs when d/2 = rw = δi.

It is reasonable to assume that when Ξ = 1, Ψeff = 1.

So, we need to weight the influence of the Ψ (N-1)/N factor according to Ξ.

As a first attempt at this we can write:

Rac = Rdc + Rdc (Ξ -1) Ψ (N-1)/N

This is is an improvement over simple multiplication, but the (N-1)/N factor causes Rac to be 
underestimated when Ψ=1.

To correct that, we can replace N-1 with N-(Ψ-1)/Ψ.

Hence:

Rac = Rdc + Rdc (Ξ -1) Ψ (N-1+1/Ψ) / N

i.e.:

Rac = Rdc [1 + (Ξ -1) Ψ (N-1+1/Ψ) / N ]

This is doubly asymptotic (i.e., correct at both low and high frequencies), and so is the best we can 
do with Medhurst's data.

Paul Zwicky has used this calculation method and found good agreement with experiment9.

█

9 Optimierung der Güte einlagiger zylindrischer Luftspulen, Paul Zwicky HB9DFZ, Funkamateur, Okt. 2013, 
p1080-1084, + picture on P1032.  English translated work files relating to that article are given at: 
http://g3ynh.info/zdocs/magnetics/appendix/optQ_hb9dfz.html


